太陽(yáng)能電池及材料研究
引言
太陽(yáng)能是人類(lèi)取之不盡用之不竭的可再生能源.也是清潔能源,不產(chǎn)生任何的環(huán)境污染。在太陽(yáng)能的有效利用當中;大陽(yáng)能光電利用是近些年來(lái)發(fā)展最快,最具活力的研究領(lǐng)域, 是其中最受矚目的項目之一。為此,人們研制和開(kāi)發(fā)了太陽(yáng)能電池。制作太陽(yáng)能電池主要是以半導體材料為基礎,其工作原理是利用光電材料吸收光能后發(fā)生光電于轉換反應,根據所用材料的不同,太陽(yáng)能電池可分為:1、硅太陽(yáng)能電池;2、以無(wú)機鹽如砷化鎵III-V化合物、硫化鎘、銅銦硒等多元化合物為材料的電池;3、功能高分子材料制備的大陽(yáng)能電池;4、納米晶太陽(yáng)能電池等。不論以何種材料來(lái)制作電池,對太陽(yáng)能電池材料一般的要求有:1、半導體材料的禁帶不能太寬;②要有較高的光電轉換效率:3、材料本身對環(huán)境不造成污染;4、材料便于工業(yè)化生產(chǎn)且材料性能穩定;谝陨蠋讉(gè)方面考慮,硅是最理想的太陽(yáng)能電池材料,這也是太陽(yáng)能電池以硅材料為主的主要原因。但隨著(zhù)新材料的不斷開(kāi)發(fā)和相關(guān)技術(shù)的發(fā)展,以其它村料為基礎的太陽(yáng)能電池也愈來(lái)愈顯示出誘人的前景。本文簡(jiǎn)要地綜述了太陽(yáng)能電池的種類(lèi)及其研究現狀,并討論了太陽(yáng)能電池的發(fā)展及趨勢。
1 硅系太陽(yáng)能電池
1.1 單晶硅太陽(yáng)能電池
硅系列太陽(yáng)能電池中,單晶硅大陽(yáng)能電池轉換效率最高,技術(shù)也最為成熟。高性能單晶硅電池是建立在高質(zhì)量單晶硅材料和相關(guān)的成熱的加工處理工藝基礎上的,F在單晶硅的電地工藝己近成熟,在電池制作中,一般都采用表面織構化、發(fā)射區鈍化、分區摻雜等技術(shù),開(kāi)發(fā)的電池主要有平面單晶硅電池和刻槽埋柵電極單晶硅電池。提高轉化效率主要是靠單晶硅表面微結構處理和分區摻雜工藝。在此方面,德國夫朗霍費費萊堡太陽(yáng)能系統研究所保持著(zhù)世界領(lǐng)先水平。該研究所采用光刻照相技術(shù)將電池表面織構化,制成倒金字塔結構。并在表面把一13nm。厚的氧化物鈍化層與兩層減反射涂層相結合.通過(guò)改進(jìn)了的電鍍過(guò)程增加柵極的寬度和高度的比率:通過(guò)以上制得的電池轉化效率超過(guò)23%,是大值可達23.3%。Kyocera公司制備的大面積(225cm2)單電晶太陽(yáng)能電池轉換效率為19.44%,國內北京太陽(yáng)能研究所也積極進(jìn)行高效晶體硅太陽(yáng)能電池的研究和開(kāi)發(fā),研制的平面高效單晶硅電池(2cm X 2cm)轉換效率達到19.79%,刻槽埋柵電極晶體硅電池(5cm X 5cm)轉換效率達8.6%。
單晶硅太陽(yáng)能電池轉換效率無(wú)疑是最高的,在大規模應用和工業(yè)生產(chǎn)中仍占據主導地位,但由于受單晶硅材料價(jià)格及相應的繁瑣的電池工藝影響,致使單晶硅成本價(jià)格居高不下,要想大幅度降低其成本是非常困難的。為了節省高質(zhì)量材料,尋找單晶硅電池的替代產(chǎn)品,現在發(fā)展了薄膜太陽(yáng)能電
池,其中多晶硅薄膜太陽(yáng)能電池和非晶硅薄膜太陽(yáng)能電池就是典型代表。
1.2 多晶硅薄膜太陽(yáng)能電池
通常的晶體硅太陽(yáng)能電池是在厚度350~450μm的高質(zhì)量硅片上制成的,這種硅片從提拉或澆鑄的硅錠上鋸割而成。因此實(shí)際消耗的硅材料更多。為了節省材料,人們從70年代中期就開(kāi)始在廉價(jià)襯底上沉積多晶硅薄膜,但由于生長(cháng)的硅膜晶粒大小,未能制成有價(jià)值的太陽(yáng)能電池。為了獲得大尺寸晶粒的薄膜,人們一直沒(méi)有停止過(guò)研究,并提出了很多方法。目前制備多晶硅薄膜電池多采用化學(xué)氣相沉積法,包括低壓化學(xué)氣相沉積(LPCVD)和等離子增強化學(xué)氣相沉積(PECVD)工藝。此外,液相外延法(LPPE)和濺射沉積法也可用來(lái)制備多晶硅薄膜電池。
化學(xué)氣相沉積主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,為反應氣體,在一定的保護氣氛下反應生成硅原子并沉積在加熱的襯底上,襯底材料一般選用Si、SiO2、Si3N4等。但研究發(fā)現,在非硅襯底上很難形成較大的晶粒,并且容易在晶粒間形成空隙。解決這一問(wèn)題辦法是先用 LPCVD在襯底上沉熾一層較薄的非晶硅層,再將這層非晶硅層退火,得到較大的晶粒,然后再在這層籽晶上沉積厚的多晶硅薄膜,因此,再結晶技術(shù)無(wú)疑是很重要的一個(gè)環(huán)節,目前采用的技術(shù)主要有固相結晶法和中區熔再結晶法。多晶硅薄膜電池除采用了再結晶工藝外,另外采用了幾乎所有制備單晶硅太陽(yáng)能電池的技
術(shù),這樣制得的太陽(yáng)能電池轉換效率明顯提高。德國費萊堡太陽(yáng)能研究所采用區館再結晶技術(shù)在FZ Si襯底上制得的多晶硅電池轉換效率為19%,日本三菱公司用該法制備電池,效率達16.42%。
液相外延(LPE)法的原理是通過(guò)將硅熔融在母體里,降低溫度析出硅膜。美國Astropower公司采用LPE制備的電池效率達12.2%。中國光電發(fā)展技術(shù)中心的陳哲良采用液相外延法在冶金級硅片上生長(cháng)出硅晶粒,并設計了一種類(lèi)似于晶體硅薄膜太陽(yáng)能電池的新型太陽(yáng)能電池,稱(chēng)之為“硅!碧(yáng)能電池,但有關(guān)性能方面的報道還未見(jiàn)到。
多晶硅薄膜電池由于所使用的硅遠較單晶硅少,又無(wú)效率衰退問(wèn)題,并且有可能在廉價(jià)襯底材料上制備,其成本遠低于單晶硅電池,而效率高于非晶硅薄膜電池,因此,多晶硅薄膜電池不久將會(huì )在太陽(yáng)能電地市場(chǎng)上占據主導地位。
1.3 非晶硅薄膜太陽(yáng)能電池
開(kāi)發(fā)太陽(yáng)能電池的兩個(gè)關(guān)鍵問(wèn)題就是:提高轉換效率和 降低成本。由于非晶硅薄膜太陽(yáng)能電池的成本低,便于大規模生產(chǎn),普遍受到人們的重視并得到迅速發(fā)展,其實(shí)早在70年代初,Carlson等就已經(jīng)開(kāi)始了對非晶硅電池的研制工作,近幾年它的研制工作得到了迅速發(fā)展,目前世界上己有許多
家公司在生產(chǎn)該種電池產(chǎn)品。
非晶硅作為太陽(yáng)能材料盡管是一種很好的電池材料,但由于其光學(xué)帶隙為1.7eV, 使得材料本身對太陽(yáng)輻射光譜的長(cháng)波區域不敏感,這樣一來(lái)就限制了非晶硅太陽(yáng)能電池的轉換效率。此外,其光電效率會(huì )隨著(zhù)光照時(shí)間的延續而衰減,即所謂的光致衰退S一W效應,使得電池性能不穩定。解決這些問(wèn)題的這徑就是制備疊層太陽(yáng)能電池,疊層太陽(yáng)能電池是由在制備的p、i、n層單結太陽(yáng)能電池上再沉積一個(gè)或多個(gè)P-i-n子電池制得的。疊層太陽(yáng)能電池提高轉換效率、解決單結電池不穩定性的關(guān)鍵問(wèn)題在于:①它把不同禁帶寬度的材科組臺在一起,提高了光譜的響應范圍;②頂電池的i層較薄,光照產(chǎn)生的電場(chǎng)強度變化不大,保證i層中的光生載流子抽出;③底電池產(chǎn)生的載流子約為單電池的一半,光致衰退效應減;④疊層太陽(yáng)能電池各子電池是串聯(lián)在一起的。
非晶硅薄膜太陽(yáng)能電池的制備方法有很多,其中包括反應濺射法、PECVD法、LPCVD法等,反應原料氣體為H2稀釋的SiH4,襯底主要為玻璃及不銹鋼片,制成的非晶硅薄膜經(jīng)過(guò)不同的電池工藝過(guò)程可分別制得單結電池和疊層太陽(yáng)能電池。目前非晶硅太陽(yáng)能電池的研究取得兩大進(jìn)展:第一、三疊層結構非晶硅太陽(yáng)能電池轉換效率達到13%,創(chuàng )下新的記錄;第二.三疊層太陽(yáng)能電池年生產(chǎn)能力達5MW。美國聯(lián)合太陽(yáng)能公司(VSSC)制得的單結太陽(yáng)能電池最高轉換效率為9.3%,三帶隙三疊層電池最高轉換效率為13%.
上述最高轉換效率是在小面積(0.25cm2)電池上取得的。曾有文獻報道單結非晶硅太陽(yáng)能電池轉換效率超過(guò)12.5%,日本中央研究院采用一系列新措施,制得的非晶硅電池的轉換效率為13.2%。國內關(guān)于非晶硅薄膜電池特別是疊層太陽(yáng)能電池的研究并不多,南開(kāi)大學(xué)的耿新華等采用工業(yè)用材料,以鋁背電極制備出面積為20X20cm2、轉換效率為8.28%的a-Si/a-Si疊層太陽(yáng)能電池。
非晶硅太陽(yáng)能電池由于具有較高的轉換效率和較低的成本及重量輕等特點(diǎn),有著(zhù)極大的潛力。但同時(shí)由于它的穩定性不高,直接影響了它的實(shí)際應用。如果能進(jìn)一步解決穩定性問(wèn)題及提高轉換率問(wèn)題,那么,非晶硅大陽(yáng)能電池無(wú)疑是太陽(yáng)能電池的主要發(fā)展產(chǎn)品之一。
2 多元化合物薄膜太陽(yáng)能電池
為了尋找單晶硅電池的替代品,人們除開(kāi)發(fā)了多晶硅、非晶硅薄膜太陽(yáng)能電池外,又不斷研制其它材料的太陽(yáng)能電池。其中主要包括砷化鎵III-V族化合物、硫化鎘、硫化鎘及銅錮硒薄膜電池等。上述電池中,盡管硫化鎘、碲化鎘多晶薄膜電池的效率較非晶硅薄膜太陽(yáng)能電池效率高,成本較單晶硅電池低,并且也易于大規模生產(chǎn),但由于鎘有劇毒,會(huì )對環(huán)境造成嚴重的污染,因此,并不是晶體硅太陽(yáng)能電池最理想的替代
砷化鎵III-V化合物及銅銦硒薄膜電池由于具有較高的轉換效率受到人們的普遍重視。GaAs屬于III-V族化合物半導體材料,其能隙為1.4eV,正好為高吸收率太陽(yáng)光的值,因此,是很理想的電池材料。GaAs等III-V化合物薄膜電池的制備主要采用 MOVPE和LPE技術(shù),其中MOVPE方法制備GaAs薄膜電池受襯底位錯、反應壓力、III-V比率、總流量等諸多參數的影響。
除GaAs外,其它III-V化合物如Gasb、GaInP等電池材料也得到了開(kāi)發(fā)。1998年德國費萊堡太陽(yáng)能系統研究所制得的GaAs太陽(yáng)能電池轉換效率為24.2%,為歐洲記錄。首次制備的GaInP電池轉換效率為14.7%.見(jiàn)表2。另外,該研究所還采用堆疊結構制備GaAs,Gasb電池,該電池是將兩個(gè)獨立的電池堆疊在一起,GaAs作為上電池,下電池用的是Gasb,所得到的電池效率達到31.1%。
銅銦硒CuInSe2簡(jiǎn)稱(chēng)CIC。CIS材料的能降為1.leV,適于太陽(yáng)光的光電轉換,另外,CIS薄膜太陽(yáng)電池不存在光致衰退問(wèn)題。因此,CIS用作高轉換效率薄膜太陽(yáng)能電池材料也引起了人們的注目。
CIS電池薄膜的制備主要有真空蒸鍍法和硒化法。真空蒸鍍法是采用各自的蒸發(fā)源蒸鍍銅、銦和硒,硒化法是使用H2Se疊層膜硒化,但該法難以得到組成均勻的CIS。CIS薄膜電池從80年代最初8%的轉換效率發(fā)展到目前的15%左右。日本松下電氣工業(yè)公司開(kāi)發(fā)的摻鎵的CIS電池,其光電轉換效率為15.3%(面積1cm2)。1995年美國可再生能源研究室研制出轉換效率為17.l%的CIS太陽(yáng)能電池,這是迄今為止世界上該電池的最高轉換效率。預計到2000年CIS電池的轉換效率將達到20%,相當于多晶硅太陽(yáng)能電池。
CIS作為太陽(yáng)能電池的半導體材料,具有價(jià)格低廉、性能良好和工藝簡(jiǎn)單等優(yōu)點(diǎn),將成為今后發(fā)展太陽(yáng)能電池的一個(gè)重要方向。唯一的問(wèn)題是材料的來(lái)源,由于銦和硒都是比較稀有的元素,因此,這類(lèi)電池的發(fā)展又必然受到限制。
3 聚合物多層修飾電極型太陽(yáng)能電池
在太陽(yáng)能電池中以聚合物代替無(wú)機材料是剛剛開(kāi)始的一個(gè)太陽(yáng)能電池制爸的研究方向。其原理是利用不同氧化還原型聚合物的不同氧化還原電勢,在導電材料(電極)表面進(jìn)行多層復合,制成類(lèi)似無(wú)機P-N結的單向導電裝置。其中一個(gè)電極的內層由還原電位較低的聚合物修飾,外層聚合物的還原電位較高,電子轉移方向只能由內層向外層轉移;另一個(gè)電極的修飾正好相反,并且第一個(gè)電極上兩種聚合物的還原電位均高于后者的兩種聚合物的還原電位。當兩個(gè)修飾電極放入含有光敏化劑的電解波中時(shí).光敏化劑吸光后產(chǎn)生的電子轉移到還原電位較低的電極上,還原電位較低電極上積累的電子不能向外層聚合物轉移,只能通過(guò)外電路通過(guò)還原電位較高的電極回到電解液,因此外電路中有光電流產(chǎn)生。
由于有機材料柔性好,制作容易,材料來(lái)源廣泛,成本底等優(yōu)勢,從而對大規模利用太陽(yáng)能,提供廉價(jià)電能具有重要意義。但以有機材料制備太陽(yáng)能電池的研究?jì)H僅剛開(kāi)始,不論是使用壽命,還是電池效率都不能和無(wú)機材料特別是硅電池相比。能否發(fā)展成為具有實(shí)用意義的產(chǎn)品,還有待于進(jìn)一步研究探索。
4 納米晶化學(xué)太陽(yáng)能電池
在太陽(yáng)能電池中硅系太陽(yáng)能電池無(wú)疑是發(fā)展最成熟的,但由于成本居高不下,遠不能滿(mǎn)足大規模推廣應用的要求。為此,人們一直不斷在工藝、新材料、電池薄膜化等方面進(jìn)行探索,而這當中新近發(fā)展的納米TiO2晶體化學(xué)能太陽(yáng)能電池受到國內外科學(xué)家的重視。
自瑞士Gratzel教授研制成功納米TiO2化學(xué)大陽(yáng)能電池以來(lái),國內一些單位也正在進(jìn)行這方面的研究。納米晶化學(xué)太陽(yáng)能電池(簡(jiǎn)稱(chēng)NPC電池)是由一種在禁帶半導體材料修飾、組裝到另一種大能隙半導體材料上形成的,窄禁帶半導體材料采用過(guò)渡金屬Ru以及Os等的有機化合物敏化染料,大能隙半導體材料為納米多晶TiO2并制成電極,此外NPC電池還選用適當的氧化一還原電解質(zhì)。納米晶TiO2工作原理:染料分子吸收太陽(yáng)光能躍遷到激發(fā)態(tài),激發(fā)態(tài)不穩定,電子快速注入到緊鄰的TiO2導帶,染料中失去的電子則很快從電解質(zhì)中得到補償,進(jìn)入TiO2導帶中的電于最終進(jìn)入導電膜,然后通過(guò)外回路產(chǎn)生光電流。
納米晶TiO2太陽(yáng)能電池的優(yōu)點(diǎn)在于它廉價(jià)的成本和簡(jiǎn)單的工藝及穩定的性能。其光電效率穩定在10%以上,制作成本僅為硅太陽(yáng)電池的1/5~1/10.壽命能達到2O年以上。但由于此類(lèi)電池的研究和開(kāi)發(fā)剛剛起步,估計不久的將來(lái)會(huì )逐步走上市場(chǎng)。
5 太陽(yáng)能電池的發(fā)展趨勢
從以上幾個(gè)方面的討論可知,作為太陽(yáng)能電池的材料,III-V族化合物及CIS等系由稀有元素所制備,盡管以它們制成的太陽(yáng)能電池轉換效率很高,但從材料來(lái)源看,這類(lèi)太陽(yáng)能電池將來(lái)不可能占據主導地位。而另兩類(lèi)電池納米晶太陽(yáng)能電池和聚合物修飾電極太陽(yáng)能電地存在的問(wèn)題,它們的研究剛剛起步,技術(shù)不是很成熟,轉換效率還比較低,這兩類(lèi)電池還處于探索階段,短時(shí)間內不可能替代應系太陽(yáng)能電池。因此,從轉換效率和材料的來(lái)源角度講,今后發(fā)展的重點(diǎn)仍是硅太陽(yáng)能電池特別是多晶硅和非晶硅薄膜電池。由于多晶硅和非晶硅薄膜電池具有較高的轉換效率和相對較低的成本,將
最終取代單晶硅電池,成為市場(chǎng)的主導產(chǎn)品。
提高轉換效率和降低成本是太陽(yáng)能電池制備中考慮的兩個(gè)主要因素,對于目前的硅系太陽(yáng)能電池,要想再進(jìn)一步提高轉換效率是比較困難的。因此,今后研究的重點(diǎn)除繼續開(kāi)發(fā)新的電池材料外應集中在如何降低成本上來(lái),現有的高轉換效率的太陽(yáng)能電池是在高質(zhì)量的硅片上制成的,這是制造硅太陽(yáng)能電池最費錢(qián)的部分。因此,在如何保證轉換效率仍較高的情況下來(lái)降低襯底的成本就顯得尤為重要。也是今后太陽(yáng)能電池發(fā)展急需解決的問(wèn)題。近來(lái)國外曾采用某些技術(shù)制得硅條帶作為多晶硅薄膜太陽(yáng)能電池的基片,以達到降低成本的目的,效果還是比較現想的。